skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gu, Juping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary This paper proposes some novel compensating strategies in output feedback controller design for a class of nonlinear uncertain system. With Euler approximation introduced for unmeasured state and coordinate transformation constructed for continuous system, sampled‐data stabilization under arbitrary sampling period is firstly realized for linear system using compensation between sampling period and scaling gain. Then global sampled‐data stabilization for a class of nonlinear system is studied using linear feedback domination of Lyapunov functions. Extension of obtained results to three‐dimensional system or systems under general assumptions are also presented. With the compensation schemes proposed in controller design, the sufficiently small sampling period or approximating step previously imposed is not required any more. The proposed controllers can be easily implemented using output measurements sampled at the current step and delayed output measurements sampled at the previous step without constructing state observers which has been illustrated by the numerical studies. 
    more » « less
  2. Abstract Global sampled‐data stabilization for a class of nonlinear continuous system with input delay has been investigated directly in the discrete‐time domain due to challenges confronted in dealing with infinite‐dimensional system under input delay. Memorized state feedback controllers and output feedback controllers based on dynamic extension of state space have been constructed within the framework of co‐design between sampling period and scaling gain. Upon this compensation scheme, global sampled‐data stabilization a class of nonlinear system has been successfully realized no matter the input delay is smaller than the sampling period or not. Compared with memory‐less sampled‐data controllers, not only sampled‐data stabilization under large input delay has been realized but also transient performance of closed‐loop system has been further improved. Simulation results under different input delays and sampling periods have illustrated the effectiveness of results obtained. 
    more » « less